
J. Fluid Mech. (2002), vol. 460, pp. 337–348. c© 2002 Cambridge University Press

DOI: 10.1017/S0022112002008212 Printed in the United Kingdom

337

Surface folds during the penetration of a
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By T H O M A S P O D G O R S K I AND A N D R E W B E L M O N T E
The W. G. Pritchard Laboratories, Department of Mathematics, Pennsylvania State University,

University Park, PA 16802, USA
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When a sphere settles through the free surface of a viscous fluid, the interface is
deformed and assumes a funnel shape behind the sphere. If the fluid is viscoelastic and
the settling process is fast compared to the relaxation time of the fluid, elastic effects
are dominant and an instability occurs. The interface loses its original axisymmetry
and buckles, leading to a particular mode of pinch-off unseen in Newtonian fluids. We
present experimental evidence that stress boundary layers form in this type of flow,
and argue that a physical mechanism for this instability can be recovered, at least
qualitatively, by considering the stability of a stretched anisotropic elastic membrane
in a pressure field.

1. Introduction
When fluid properties depart from the linear (Newtonian) relationship between

stress and strain rates, unusual phenomena can occur which are a challenge to com-
mon intuition. Simple experiments with viscoelastic fluids exhibit new behaviours
unseen in their Newtonian counterparts such as the rod-climbing effect (Bird, Arm-
strong & Hassager 1987), elastic turbulence at low Reynolds number (Groisman &
Steinberg 2000) or the apparent cusp at the trailing end of a rising bubble (Hassager
1979; Bird et al. 1987; Liu, Liao & Joseph 1995).

The example of the cusped bubble is particularly interesting because it involves
an instability leading to symmetry breaking of the interface: the cusp assumes a
striking knife-edge shape, as can be seen when observing a bubble rising in any
commercial shampoo bottle turned upside-down. Jeong & Moffatt (1992) made a
detailed calculation of the shape of bidimensional free-surface cusps in Newtonian
fluids, and Liu et al. (1995) reported experiments on cusped bubbles in viscoelastic
fluids, arguing that the same analytical profile could describe the locally bidimensional
cusp shape. However, the mechanism leading to the loss of bubble axisymmetry and
the cusp formation is not yet understood. Similar instabilities are also present in
filament stretching, where a rapidly stretched viscoelastic filament loses axisymmetry,
leading to a break-up process unseen in Newtonian fluids (Spiegelberg & McKinley
1996). Kumar & Graham (2000) showed that purely elastic buckling instabilities
could explain some phenomena observed in contracting flows of viscoelastic liquids,
and suggested that similar instabilities could be responsible for the bidimensional
character of cusped bubbles.

In this paper, we present an experiment with viscoelastic fluids, in which a buckling
instability could also be occurring. When a solid sphere is gently released on the
free surface of a viscoelastic fluid, it pulls the interface down as it is settling. The
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Figure 1. Temporal sequence of the settling of a sphere through a viscoelastic fluid surface, viewed
from above. Interval between pictures: 1 s. In the last frame, dark lines were superimposed (see
text). The bar gives the scale (1 cm).

deformed interface is initially axisymmetric and forms a funnel above the sphere,
until an instability develops which leads to a loss of axisymmetry and the formation
of a cusp when the interface pinches off. After the pinch-off, the cusp slowly relaxes,
appearing as creases on the flat surface when observed from above. In contrast, the
symmetry breaking is not observed in Newtonian fluids. This phenomenon is also
observed when plunging vertically a cylindrical rod in a viscoelastic fluid (radial
streaks develop around the rod), or more simply when mixing the solution with a
magnetic stirrer or even a spoon.

We suggest a simple physical mechanism for the instability leading to the formation
of non-axisymmetric cusps in the sphere settling experiment. Following the theoretical
and numerical work of Kumar & Graham (2000) and numerical computations by Yao
& McKinley (1998) and Rasmussen & Hassager (1999) suggesting that interfacial
stress boundary layers could form in extensional interfacial flows of viscoelastic
fluids, we present experimental evidence of their existence. Based on this we make
a simplified treatment of the problem using a membrane model which leads to a
qualitative interpretation of the phenomenon.

2. Experimental observations
We made an experimental study of the settling of rigid spheres through a viscoelastic

fluid. For a qualitative exploration of the phenomena, spheres were gently released
on the surface of a fluid placed in a cylindrical container, providing axisymmetric
boundary conditions. An example is shown in figure 1 for a 3/4 in. teflon sphere
slowly sinking in a micellar fluid described below. As clearly seen in this figure, the
interface progressively loses axisymmetry and closes up forming a cusp. This cusp
appears as a central crease on the surface (long black continuous line on the last
picture of figure 1), with possible secondary creases (dotted lines) at both ends. In
a cylindrical container, the orientation of the main crease is random, and different
modes of instability can be observed, leading to various surface patterns shown in
figure 2.

For more reproducible results and quantitative measurements, non-axisymmetric
boundary conditions were used in order to select a particular mode of instability
and its orientation with respect to the observer. The experimental setup is sketched
in figure 3. The fluid lies in a rectangular Plexiglas container (length 15 cm, width
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Figure 2. Surface folds resulting from different modes of instability. From left to right: mode 2,
mode 3, and a mode 2 with secondary creases. The bar represents 1 cm on each image.

Fluid container

Falling sphere

Acquisition/ image processing

Video camera – normal position

Video camera – tangent position

Figure 3. Experimental set-up.

6 cm, height 10 cm). The sphere is held half-immersed on the surface of the fluid
with tweezers, and released with no initial velocity. Then it starts sinking in the
fluid, deforming the interface, and the phenomenon is recorded with a video camera
(COHU 4912) and a digital image processing system. The camera is placed along any
of the three axes of the container.

With these boundary conditions, the system always selects an order-2 mode of
instability, resulting in a single crease on the surface as shown on the first picture in
figure 2, and its orientation is always parallel to the smallest side of the container. The
interface folds more easily in this direction because the relative elongation and the
associated elastic stress is smaller in the longest dimension. We refer to the direction
perpendicular to the largest side of the box as the tangent direction (parallel to the
cusp direction), and the direction perpendicular to the smallest side of the box as
normal direction (normal to the cusp) (see figure 3).

We used spheres of diameters ranging from 3/8 in. (0.95 cm) to 1 in. (2.54 cm), and
densities of 1.34 g cm−3 (Delrin) and 2.3 g cm−3 (Teflon). The fluid is a solution of
cetylpyridinium chloride (CPCl) and sodium salicylate (NaSal), with respective molar
concentrations of 100 mM and 60 mM. CPCl is a surfactant that is capable of forming
long worm-like micelles in the presence of NaSal (Rehage & Hoffmann 1991). The
fluid density is ρ = 1.0 g cm−3. The strong viscoelastic properties of this fluid were
measured in a Couette geometry with a Rheometrics RFS III rheometer at T = 21 ◦C.
For a typical strain rate γ̇ (or frequency) of 0.1 s−1, the steady shear viscosity is
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Figure 4. Temporal sequence of a 3/4 in. Teflon sphere settling through an aqueous solution of
CPCl/NaSal (100 mM/60 mM). Top: tangent view; bottom: normal view. Interval between pictures
is 1 s. Frame (d ) corresponds to pinch-off time tp.

η = 140 Pa s, and the dynamic storage and loss moduli are approximately equal
(G′ ' G′′ ' 30 Pa). The relaxation time is estimated as λ ' 6 s from strain relaxation
measurements. Thus in our experiments where the velocity is U ∼ 1 mm s−1 and the
length scale a few millimetres (sphere radius R), the Deborah number De = λU/R
is of order 1 and the Reynolds number is very low (typically 10−3). Though the
conditions are less ideal, the instability has also been observed in standard polymer
solutions (carboxy-methyl-cellulose and poly-ethylene oxide).

Figure 4 shows a typical development of the instability. Initially, tangent and normal
views are very similar, indicating an axisymmetric profile of the interface, with circular
horizontal cross-sections, until at some point the interface loses axisymmetry when
the width in the tangent view wT becomes smaller than the width in the normal view
wN . As the width of the funnel decreases much faster in one direction, the interface
eventually pinches off forming a bidimensional cusp that relaxes to the surface.

Since horizontal cross-sections of the interface are roughly elliptic, we characterize
the asymmetry by the eccentricity, a function of the vertical coordinate z:

ε(z) = (wN(z)− wT (z))/(wN(z) + wT (z)). (2.1)

At a given time t, ε(z) is very small near the unperturbed free surface (at z = 0), and
increases up to a maximum εmax(t) located roughly where the interface section reaches
its smallest size. Below this point, the eccentricity decreases and drops to zero at the
sphere (figure 5a). As the sphere settles, εmax(t) increases and the position of this
maximum moves down with the sphere. Figure 5(b) shows the value of εmax versus
time for different experiments. The existence of a threshold for the instability is clearly
visible on this figure. The eccentricity remains low for a long time and only increases
slowly. At a critical time, when the interface has been sufficiently stretched, εmax(t)
starts increasing faster, showing the rapid development of the instability. Figure 5(b)
also reveals that the instability is more pronounced for big heavy spheres than for
small light spheres; in the latter case, the time of the experiment is much longer than
the relaxation time of the fluid.
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Figure 5. Experimental measurements of interface eccentricity ε(z). (a) Temporal evolution of the
eccentricity profile for a 3/4 in. Teflon sphere settling through an aqueous solution of CPCl/NaSal
(100 mM/60 mM). From bottom to top, curves correspond to t − tp = −5, −4, −3, −2, −1, −0.5,
−0.1, 0.1 and 1 s, where tp is the pinch-off time. Dotted curves are after pinch-off. (b) Position of the
maximum eccentricity versus time for different spheres settling through the same micellar solution.

3. Stress boundary layers
Before attempting to model the instability discussed above, we made a qualitative

visual observation of particle displacements in the fluid near the settling sphere.
This visualization reveals a strong stretching flow in the vicinity of the free surface,
whereas velocities and strains are relatively small elsewhere. We thus suspect that
an extensional stress boundary layer occurs at the interface, which can be viewed
as a natural consequence of the boundary conditions at the free surface: when an
interface is pinned on two separating solid surfaces (the sphere and the walls of the
container), its surface area must increase with time, which in our case is realized by
a local stretching flow. Yao & McKinley (1998), Rasmussen & Hassager (1999) and
Kumar & Graham (2000) have shown by different theoretical and computational
means that stress boundary layers can form in extensional flows of viscoelastic fluids.
However, their results all deal with specific models of viscoelastic fluids, namely the
upper convected Maxwell (UCM) and Oldroyd-B models; they were not checked
experimentally.

Worm-like micellar solutions are known to exhibit strong birefringent properties
under flow (Hu, Wang & Jamieson 1993). As a consequence, when observed through
crossed polarizers, one can readily see the distribution of stress, as in the popular
photoelasticity technique used for solids. We performed a qualitative visualization
of the stresses in a quasi-bidimensional flow where the interface is stretched in a
similar way to the sphere experiment; the axisymmetric flow was less easy to visualize
via birefringence techniques. We used a cell of width 15 cm, thickness 3.5 cm and
height 30 cm filled with our fluid (100 mM CPCl, 60 mM NaSal). This cell was placed
between two crossed linear polarizers as shown in figure 6(a), and lit from behind
with a uniform source of light. When the fluid is at rest, it is optically isotropic
and no light comes through the system. When a 0.2 cm thick and 3 cm wide plate
is plunged vertically in the fluid at a constant speed of about 0.5 cm s−1, the fluid is
highly stretched both at the free liquid–air boundary and at the surface of the plate;
it becomes strongly birefringent there. As visible from the closely spaced light and
dark regions in figure 6(b), strong stress gradients occur in a thin boundary layer
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(a)

(b)

Figure 6. Visualization of stress boundary layers in a bidimensional flow using birefringence.
(a) Set-up: the cell containing the fluid is placed between crossed linear polarizers (arrows indicate
the axis of the polarizers); (b) Image obtained when a 2 mm thick plate plunges into the fluid at a
velocity of about 0.5 cm s−1. Fringes are seen where a concentration of stress occurs. The thickness
of the plate sets the scale, and the arrow indicates the point of contact between the free surface and
the plate.

which is only a few millimetres thick, whereas the stresses are more uniform and
much smaller in the bulk. It is reasonable to expect that the concentration of stress
visible near the solid surface is due to shear, whereas extensional stress is dominant
at the free surface which is literally pulled by the moving plate.

To our knowledge, this is the first experimental evidence of elastic stress boundary
layers in extensional flows. This feature of the flow is particularly appealing since it
suggests a simplified treatment of our settling sphere problem, in which the stress
boundary layer is approximated as an anisotropic elastic membrane.

4. Stability of an axisymmetric membrane in a pressure reservoir
A sphere falling through the free surface of a viscous Newtonian fluid will draw

out a funnel-shaped interface similar to what is reported here, and at low Reynolds
number Re one could reasonably neglect flow effects and solve for the interface shape
as a balance between hydrostatic pressure and surface tension. This is essentially the
problem of Taylor & Michael (1973), who studied axisymmetric holes in films of
Newtonian liquids lying on horizontal surfaces. As the flow in our non-Newtonian
fluid is slow (Re ∼ 10−3), we propose a simple model based on the same principle,
taking into account the strong extensional stretching near the free surface in terms
of stress boundary layers. While it would of course be more correct to solve the full
equations of motion for the fluid, including an appropriate constitutive equation, we
hope to gain some understanding of the instability which leads to surface folds using
this simplified but more tractable model.

For a Deborah number of 1, elastic effects are very important, especially in a
transient extensional flow like ours. Since we have reasonable evidence of the existence
of interfacial stress boundary layers in extensional flows, we will model the main
features of the interface shape and its instability by assuming that the fluid is divided
in two regions: an interfacial zone which behaves essentially as an elastic membrane
(of thickness w) stretched by the moving sphere, and an almost static fluid in the bulk
where the flow is negligible. The relaxation of the fluid is neglected on the timescale
of the experiment: the onset of instability is reached within a few seconds, whereas
λ ' 6 s. Under this assumption, the deformation of the interface can be considered
as a succession of quasi-static equilibrium states, where the tension in the membrane
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Figure 7. (a) Notation for the model. The elastic membrane is axisymmetric with respect to the
z-axis. The fluid is outside (density ρ), with flat free surface at z = 0 and air is inside. The radii of
the membrane at z = 0 and z = h are fixed and respectively equal to Rc and Rh. (b) Cross section
at z = h in the perturbed state.

balances hydrostatic pressure. In other words, we assume that there is a separation of
timescales between the slow extensional flow which creates the interfacial elastic stress
and the force balance which acts to determine the shape of the interface. Kumar &
Graham (2000) investigated numerically the similar case of an initially conical elastic
(neo-Hookean) membrane enclosing a constant volume of fluid, and showed that it
was unstable with respect to azimuthal perturbations. In this section, we represent
our flow as an elastic membrane separating a reservoir of fluid from an axisymmetric
hole, as sketched in figure 7, and we address its linear stability. Note that, because
the streamlines of the flow due to the settling sphere are along the meridians of
the interface, we expect that the tension in the membrane approximation will be
anisotropic, and much larger along the streamlines.

4.1. Base state

We define τ1 and τ2 as the stresses along the principal directions integrated over the
thickness w of the membrane; τ1(z, t) and τ2(z, t) are thus the stress resultants in the
direction of meridian curves and curves of latitude, respectively, at a given position z
and time t. The equation of equilibrium for a thin membrane in a hydrostatic pressure
field is (Green & Adkins 1960)

ρgz = τ1(z, t)
r′′(z)

(1 + (r′(z))2)3/2
− τ2(z, t)

1

r(1 + (r′(z))2)1/2
, (4.1)

where ρ is the density of the fluid, g the acceleration due to gravity, and r the distance
to the vertical symmetry axis.

These stress resultants are functions of the local extension ratios which depend on
the global deformation of the membrane. They can be related to strains using the
equations of finite elasticity for axisymmetric membranes (Green & Adkins 1960),
with a simple elastic constitutive equation like the neo-Hookean model:

τ1 = 4Cwλ3(λ
2
1 − λ2

3), (4.2)

τ2 = 4Cwλ3(λ
2
2 − λ2

3), (4.3)

where λ1 and λ2 are the extension ratios in the principal directions of the membrane
and λ3 = (λ1λ2)

−1.
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It is in principle possible to obtain the exact equilibrium shape of the interface by
solving equations (4.1)–(4.3) along with the internal equilibrium condition:

d

ds
(τ1r) = τ2

dr

ds
, (4.4)

where s is the arclength along the meridian curves. However, in the general case, no
analytical solution is known, and numerical simulation is probably necessary.

Equation (4.1) is a generalization of the equation for constant-curvature problems.
If we set τ1 = τ2 = σ (surface tension) and ρ = 0 (no fluid on both sides), we get
the classical minimal surface equation (e.g. for soap films), where the solution is a
surface of zero mean curvature. This solution (a catenoid) collapses and pinches off
symmetrically if the height of the soap film is too large compared to its diameter
(Chen & Steen 1997). If we set τ1 = τ2 = σ and ρ 6= 0, we obtain the same equation
as Taylor & Michael (1973). In this case, there exists a critical thickness of the fluid
of order the capillary length, above which no static solution exists. Below this critical
value, there is a single solution for each value of the total depth h.

In the elastic membrane approximation, we implicitly assume for simplicity that
τ1 and τ2 are nearly constant (z-independent) in some region of the interface. We
thus treat them as parameters, and do not seek to relate them to strains in the
membrane. This is equivalent to solving the equilibrium problem in equation (4.1) for
a given position (fixed t) of the sphere. One can then define a characteristic length
` = (τ1/ρg)1/2, the analogue of the capillary length in Newtonian interfacial problems.
Rescaling all lengths by ` and restricting the analysis to the waist where the instability
is more likely to occur because the curvature is highest, we have r′(z) � 1 and the
force balance equation (4.1) becomes

r′′(z)− βr−1 − z = 0, (4.5)

where β = τ2/τ1 is the only non-dimensional parameter.
We seek to demonstrate the existence of an instability occurring when both ends of

the membrane are sufficiently pulled apart; we will not attempt to compute the exact
solution r(z) for equation (4.5). Since the experiment shows that the meridians of the
membrane are approximately parabolic around z = h, we assume

r(z) ' Rh + (Rc − Rh)h−2(z − h)2. (4.6)

This is equivalent to a Taylor expansion of order 2 around z = h, where Rh is the
minimum radius of the hole, and Rc is the effective radius at z = 0. Evaluating the
force balance (4.5) at z = h gives an equilibrium condition relating h, Rh and Rc for
the axisymmetric interface:

2(Rc − Rh)h−2 − βR−1
h − h = 0. (4.7)

4.2. Linear stability

To assess the stability near the narrow waist of the membrane (4.6), we will simply
assume a small periodic distortion of its shape, and calculate whether the forces arising
in the membrane will enhance or diminish it. We assume the perturbed membrane at
z = h is of the form

rp(h, φ) = Rh(1 + ξcos nφ), (4.8)

where n is the order of the perturbation mode, φ the azimuthal, angle and ξ the
relative amplitude of the perturbation (see figure 7b). If the perturbation is sufficiently
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small, meridians are still parabolic, so that we can write

rp(z, φ) = rp(h, φ) + (Rc − rp(h, φ))(z − h)2h−2. (4.9)

Note that in equations (4.1) and (4.5), we only considered the elastic stresses arising
from the stretching of the membrane. The extension ratios in our problem being
rather large (of order 1), the bending energy is probably negligible in the base state
for a thin membrane. Moreover, the unstressed state will not be the initially flat fluid
surface, at which point the polymers are unstretched, but at some later time, when
the surface is already funnel shaped.

In the perturbed state however, the particular form we choose for the perturbation
induces significant bending of the membrane, whereas it does not introduce any
additional stretching effect: at first order, the perimeter of the equator (waist) is
constant. Thus we believe that the bending forces will play an important role in the
perturbed force balance, whereas almost no additional stretching will occur, i.e. τ1 and
τ2 will not be modified by the perturbation (at least at leading order). Consequently,
only the curvature terms should be modified in equation (4.7) due to the change in
geometry, β being kept constant. Then we will add a bending force in an ad hoc way,
to introduce a damping term in the equation and qualitatively capture the effect of
this force.

In the limit w << Rh, we use the classical equation of equilibrium relating the
deformation ζ of an incompressible plate to the external force distribution P acting
on it (Landau & Lifshitz 1970):

P = (1/9)Ew3∇4ζ, (4.10)

where E is Young’s modulus, ζ = Rhξcos nφ and ∇ = R−1
h ∂/∂φ. Strictly speaking,

this equation is only valid for small deformations, whereas our membrane is already
highly stretched. However, we will assume the validity of equation (4.10) to represent
influence of bending forces on the stability. Thus, the bending force exerted by the
membrane is

Fb = −E
∗w3n4

9R3
h

ξcos nφ, (4.11)

where E∗ = E/ρg` is the non-dimensional modulus, and all lengths are rescaled by `.
The contribution of τ1 represented by the first term in equation (4.7) becomes

F1 = 2h−2(Rc − Rh(1 + ξcos nφ)). (4.12)

The curvature in the horizontal plane of the perturbed membrane at z = h is

κ =
(
r2
p + 2(∂rp/∂φ)2 − rp(∂2rp/∂φ

2)
) (
r2
p + (∂rp/∂φ)2

)−3/2
. (4.13)

Expanding κ in powers of ξ and neglecting terms of order higher than one, we obtain
the following expression for the τ2 term:

F2 = −βR−1
h (1 + (n2 − 1)ξcos nφ). (4.14)

The driving force of the instability F is the sum of all forces acting on the membrane
in the perturbed case: F = F1 + F2 + Fb − h. Subtracting the equilibrium condition in
the unperturbed state (equation (4.7)), we obtain the following expression for F:

F = −
(

2R2
h

h2
+ β(n2 − 1) +

E∗w3n4

9R2
h

)
ξcos nφ. (4.15)
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This force is destabilizing if its sign is identical to that of the perturbation ξcos nφ,
or

α(n2 − 1)− δn4 − 1 > 0, (4.16)

where α = −βh2/(2R2
h) is a control parameter known from experiments to increase as

the sphere sinks, and δ = Ew3h2/(18ρgR4
h) represents the relative importance of the

stabilizing effect due to bending (all quantities are dimensional here). At the onset of
instability, this force is exactly zero and α = αc.

4.3. Discussion

For a Newtonian fluid, β = 1 (τ1 = τ2 = σ), and δ = 0 (since w = 0), so that the
instability criterion (4.16) reduces to

1 +
h2

2R2
h

(n2 − 1) 6 0. (4.17)

There is no solution except when n = 0, which corresponds to an axisymmetric
expansion/contraction of the interface. Consistent with experimental observation, the
system is always stable with respect to azimuthal disturbances.

In contrast, if the membrane models a stretched viscoelastic interface, the tension
in the membrane has both a surface tension and an elastic component which can be
dominant if the deformations are large. As the moving sphere sinks in the fluid, the
interface is stretched in the meridian direction and a positive τ1 builds up. On the
other hand, the fluid motion can pull a region of the surface at a given diameter on
the interface to a smaller diameter, which may cause the azimuthal component τ2

(hoop stress) to become negative. Kumar & Graham (2000) showed that a converging
extensional flow near a free surface produces such a compressive stress. In the
membrane approach, such a negative or compressive tension is also seen in the study
of a membrane enclosing a constant volume of fluid (Kumar & Graham 2000). In
equation (4.3), the condition τ2 < 0 translates into λ2 < λ3 or λ1λ

2
2 < 1. If we assume

a large deformation in which the length of the meridian curve is multiplied by say
2, and the distance to the axis of some material point is reduced to half its original
value, then we have λ1 = 2, λ2

2 = 1/4, which gives τ2 < 0. This would be likely to occur
at a point when the meridian line is sufficiently curved, and Rh is small compared to
the overall size.

Thus β may become negative, and α positive which allows one or more unstable
modes of deformation. A given mode n becomes unstable at

αc = (1 + δn4)/(n2 − 1). (4.18)

The most unstable mode ñ corresponds to ∂αc/∂n = 0, that is

ñ =
(
1 + (1 + δ−1)1/2

)1/2
. (4.19)

If we neglect the bending of the membrane (δ → 0) then ñ → ∞, i.e. higher-
order modes are more unstable than lower ones. In this case, the tension τ2 acts
like a negative surface tension, which promotes surface creation and high curva-
tures. This feature is essential since it gives rise to an entire new class of insta-
bilities unseen in Newtonian fluids where surface tension is positive. If we consider
a finite thickness w for the membrane, δ > 0 and ñ is a decreasing function of
δ. For sufficiently large values of δ, the onset of instability for the lowest-order
modes is reached first (figure 8). Experimentally, with axisymmetric boundary con-
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Figure 8. (a) Value of the control parameter αc at the onset of instability versus the bending
parameter δ, for different modes of instability n. When the bending effect is negligible (δ small),
high-order modes are more unstable. Above δ ' 0.05, the simplest mode n = 2 is the most unstable.
(b) Rescaled driving force α(n2− 1)− 1− δn4 versus instability mode n for δ = 0.005 (dotted curves)
and δ = 0.1 (solid curves), and increasing values of the control parameter α.

ditions, we observed almost exclusively modes n = 2 and 3, which corresponds to
δ ' 0.05.

5. Conclusion
We have presented a new experiment in which the behaviour of a viscoelastic

fluid departs strikingly from that of a Newtonian fluid. As a rigid sphere slowly
sinks through the free surface of the fluid, the interface shape undergoes symmetry
breaking and pinches in a non-axisymmetric way, leaving creases on the surface. We
suggest a simplified model to provide a mechanism of instability for the genesis of
these surface folds.

Although modelling the interface as an anisotropic elastic membrane bounding a
static fluid is a crude simplification of the physical system, it provides an interpretation
of the instability. We identify this phenomenon as a buckling instability, which requires
a strong elasticity of the fluid. This simplified model is in qualitative agreement with
experimental observations. Quantitative predictions would require a more realistic
model which would take into account the full dynamics of the non-Newtonian
fluid.

Finally, we would like to point out the similarity between this surface folding
process and the formation of cusps at the trailing end of bubbles rising in non-
Newtonian fluids, which is still an unresolved issue. We believe that a mechanism
qualitatively similar to that described in this paper is responsible for the nature of
the two-dimensional cusp on rising bubbles, a point first raised by Kumar & Grahm
(2000). Although the details of the flow are different, the main ingredients of this
instability are an elongation in the direction of motion and a contraction in the radial
direction responsible for a compressive hoop stress.
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